3.12.58 \(\int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx\) [1158]

3.12.58.1 Optimal result
3.12.58.2 Mathematica [A] (verified)
3.12.58.3 Rubi [A] (verified)
3.12.58.4 Maple [B] (verified)
3.12.58.5 Fricas [B] (verification not implemented)
3.12.58.6 Sympy [F]
3.12.58.7 Maxima [F]
3.12.58.8 Giac [F(-2)]
3.12.58.9 Mupad [B] (verification not implemented)

3.12.58.1 Optimal result

Integrand size = 32, antiderivative size = 174 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx=-\frac {i \text {arctanh}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d} \sqrt {a+i a \tan (e+f x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {c-i d} f}-\frac {\sqrt {c+d \tan (e+f x)}}{(i c+d) f \sqrt {a+i a \tan (e+f x)}}+\frac {2 d \sqrt {c+d \tan (e+f x)}}{\left (c^2+d^2\right ) f \sqrt {a+i a \tan (e+f x)}} \]

output
-1/2*I*arctanh(2^(1/2)*a^(1/2)*(c+d*tan(f*x+e))^(1/2)/(c-I*d)^(1/2)/(a+I*a 
*tan(f*x+e))^(1/2))/f*2^(1/2)/a^(1/2)/(c-I*d)^(1/2)-(c+d*tan(f*x+e))^(1/2) 
/(I*c+d)/f/(a+I*a*tan(f*x+e))^(1/2)+2*d*(c+d*tan(f*x+e))^(1/2)/(c^2+d^2)/f 
/(a+I*a*tan(f*x+e))^(1/2)
 
3.12.58.2 Mathematica [A] (verified)

Time = 1.20 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.74 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx=-\frac {i \arctan \left (\frac {\sqrt {-a (c-i d)} \sqrt {a+i a \tan (e+f x)}}{\sqrt {2} a \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {2} \sqrt {-a (c-i d)} f}+\frac {i \sqrt {c+d \tan (e+f x)}}{(c+i d) f \sqrt {a+i a \tan (e+f x)}} \]

input
Integrate[1/(Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c + d*Tan[e + f*x]]),x]
 
output
((-I)*ArcTan[(Sqrt[-(a*(c - I*d))]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[2]*a* 
Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[2]*Sqrt[-(a*(c - I*d))]*f) + (I*Sqrt[c + 
 d*Tan[e + f*x]])/((c + I*d)*f*Sqrt[a + I*a*Tan[e + f*x]])
 
3.12.58.3 Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.02, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {3042, 4031, 3042, 4029, 3042, 4027, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx\)

\(\Big \downarrow \) 4031

\(\displaystyle \frac {\int \frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {i \tan (e+f x) a+a}}dx}{c-i d}+\frac {2 d \sqrt {c+d \tan (e+f x)}}{f \left (c^2+d^2\right ) \sqrt {a+i a \tan (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {i \tan (e+f x) a+a}}dx}{c-i d}+\frac {2 d \sqrt {c+d \tan (e+f x)}}{f \left (c^2+d^2\right ) \sqrt {a+i a \tan (e+f x)}}\)

\(\Big \downarrow \) 4029

\(\displaystyle \frac {\frac {(c-i d) \int \frac {\sqrt {i \tan (e+f x) a+a}}{\sqrt {c+d \tan (e+f x)}}dx}{2 a}+\frac {i \sqrt {c+d \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}}}{c-i d}+\frac {2 d \sqrt {c+d \tan (e+f x)}}{f \left (c^2+d^2\right ) \sqrt {a+i a \tan (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {(c-i d) \int \frac {\sqrt {i \tan (e+f x) a+a}}{\sqrt {c+d \tan (e+f x)}}dx}{2 a}+\frac {i \sqrt {c+d \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}}}{c-i d}+\frac {2 d \sqrt {c+d \tan (e+f x)}}{f \left (c^2+d^2\right ) \sqrt {a+i a \tan (e+f x)}}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {\frac {i \sqrt {c+d \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}}-\frac {i a (c-i d) \int \frac {1}{a (c-i d)-\frac {2 a^2 (c+d \tan (e+f x))}{i \tan (e+f x) a+a}}d\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {i \tan (e+f x) a+a}}}{f}}{c-i d}+\frac {2 d \sqrt {c+d \tan (e+f x)}}{f \left (c^2+d^2\right ) \sqrt {a+i a \tan (e+f x)}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {i \sqrt {c+d \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}}-\frac {i \sqrt {c-i d} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d} \sqrt {a+i a \tan (e+f x)}}\right )}{\sqrt {2} \sqrt {a} f}}{c-i d}+\frac {2 d \sqrt {c+d \tan (e+f x)}}{f \left (c^2+d^2\right ) \sqrt {a+i a \tan (e+f x)}}\)

input
Int[1/(Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c + d*Tan[e + f*x]]),x]
 
output
(2*d*Sqrt[c + d*Tan[e + f*x]])/((c^2 + d^2)*f*Sqrt[a + I*a*Tan[e + f*x]]) 
+ (((-I)*Sqrt[c - I*d]*ArcTanh[(Sqrt[2]*Sqrt[a]*Sqrt[c + d*Tan[e + f*x]])/ 
(Sqrt[c - I*d]*Sqrt[a + I*a*Tan[e + f*x]])])/(Sqrt[2]*Sqrt[a]*f) + (I*Sqrt 
[c + d*Tan[e + f*x]])/(f*Sqrt[a + I*a*Tan[e + f*x]]))/(c - I*d)
 

3.12.58.3.1 Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4029
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^n/(2*b*f*m)), x] - Simp[(a*c - b*d)/(2*b^2)   Int[(a + b*Tan[e + f 
*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, 
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Eq 
Q[m + n, 0] && LeQ[m, -2^(-1)]
 

rule 4031
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-d)*(a + b*Tan[e + f*x])^m*((c + d*Ta 
n[e + f*x])^(n + 1)/(f*m*(c^2 + d^2))), x] + Simp[a/(a*c - b*d)   Int[(a + 
b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d 
, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^ 
2, 0] && EqQ[m + n + 1, 0] &&  !LtQ[m, -1]
 
3.12.58.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1737 vs. \(2 (143 ) = 286\).

Time = 1.74 (sec) , antiderivative size = 1738, normalized size of antiderivative = 9.99

method result size
derivativedivides \(\text {Expression too large to display}\) \(1738\)
default \(\text {Expression too large to display}\) \(1738\)

input
int(1/(a+I*a*tan(f*x+e))^(1/2)/(c+d*tan(f*x+e))^(1/2),x,method=_RETURNVERB 
OSE)
 
output
1/4/f*(a*(1+I*tan(f*x+e)))^(1/2)*(c+d*tan(f*x+e))^(1/2)/a*(-4*I*c*d^2*(a*( 
1+I*tan(f*x+e))*(c+d*tan(f*x+e)))^(1/2)*tan(f*x+e)-4*I*(a*(1+I*tan(f*x+e)) 
*(c+d*tan(f*x+e)))^(1/2)*d^3-6*I*2^(1/2)*(-a*(I*d-c))^(1/2)*ln((3*a*c+I*a* 
tan(f*x+e)*c-I*a*d+3*a*d*tan(f*x+e)+2*2^(1/2)*(-a*(I*d-c))^(1/2)*(a*(1+I*t 
an(f*x+e))*(c+d*tan(f*x+e)))^(1/2))/(tan(f*x+e)+I))*c*d^2*tan(f*x+e)+3*I*2 
^(1/2)*(-a*(I*d-c))^(1/2)*ln((3*a*c+I*a*tan(f*x+e)*c-I*a*d+3*a*d*tan(f*x+e 
)+2*2^(1/2)*(-a*(I*d-c))^(1/2)*(a*(1+I*tan(f*x+e))*(c+d*tan(f*x+e)))^(1/2) 
)/(tan(f*x+e)+I))*c^2*d-2^(1/2)*(-a*(I*d-c))^(1/2)*ln((3*a*c+I*a*tan(f*x+e 
)*c-I*a*d+3*a*d*tan(f*x+e)+2*2^(1/2)*(-a*(I*d-c))^(1/2)*(a*(1+I*tan(f*x+e) 
)*(c+d*tan(f*x+e)))^(1/2))/(tan(f*x+e)+I))*c^3*tan(f*x+e)^2+3*2^(1/2)*(-a* 
(I*d-c))^(1/2)*ln((3*a*c+I*a*tan(f*x+e)*c-I*a*d+3*a*d*tan(f*x+e)+2*2^(1/2) 
*(-a*(I*d-c))^(1/2)*(a*(1+I*tan(f*x+e))*(c+d*tan(f*x+e)))^(1/2))/(tan(f*x+ 
e)+I))*c*d^2*tan(f*x+e)^2-4*I*(a*(1+I*tan(f*x+e))*(c+d*tan(f*x+e)))^(1/2)* 
c^2*d-I*2^(1/2)*(-a*(I*d-c))^(1/2)*ln((3*a*c+I*a*tan(f*x+e)*c-I*a*d+3*a*d* 
tan(f*x+e)+2*2^(1/2)*(-a*(I*d-c))^(1/2)*(a*(1+I*tan(f*x+e))*(c+d*tan(f*x+e 
)))^(1/2))/(tan(f*x+e)+I))*d^3-6*2^(1/2)*(-a*(I*d-c))^(1/2)*ln((3*a*c+I*a* 
tan(f*x+e)*c-I*a*d+3*a*d*tan(f*x+e)+2*2^(1/2)*(-a*(I*d-c))^(1/2)*(a*(1+I*t 
an(f*x+e))*(c+d*tan(f*x+e)))^(1/2))/(tan(f*x+e)+I))*c^2*d*tan(f*x+e)+2*2^( 
1/2)*(-a*(I*d-c))^(1/2)*ln((3*a*c+I*a*tan(f*x+e)*c-I*a*d+3*a*d*tan(f*x+e)+ 
2*2^(1/2)*(-a*(I*d-c))^(1/2)*(a*(1+I*tan(f*x+e))*(c+d*tan(f*x+e)))^(1/2...
 
3.12.58.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 381 vs. \(2 (136) = 272\).

Time = 0.28 (sec) , antiderivative size = 381, normalized size of antiderivative = 2.19 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx=-\frac {{\left ({\left (-i \, a c + a d\right )} f \sqrt {-\frac {2 i}{{\left (i \, a c + a d\right )} f^{2}}} e^{\left (i \, f x + i \, e\right )} \log \left ({\left (i \, a c + a d\right )} f \sqrt {-\frac {2 i}{{\left (i \, a c + a d\right )} f^{2}}} e^{\left (i \, f x + i \, e\right )} + \sqrt {2} \sqrt {\frac {{\left (c - i \, d\right )} e^{\left (2 i \, f x + 2 i \, e\right )} + c + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} {\left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right )}\right ) + {\left (i \, a c - a d\right )} f \sqrt {-\frac {2 i}{{\left (i \, a c + a d\right )} f^{2}}} e^{\left (i \, f x + i \, e\right )} \log \left ({\left (-i \, a c - a d\right )} f \sqrt {-\frac {2 i}{{\left (i \, a c + a d\right )} f^{2}}} e^{\left (i \, f x + i \, e\right )} + \sqrt {2} \sqrt {\frac {{\left (c - i \, d\right )} e^{\left (2 i \, f x + 2 i \, e\right )} + c + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} {\left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right )}\right ) + 2 \, \sqrt {2} \sqrt {\frac {{\left (c - i \, d\right )} e^{\left (2 i \, f x + 2 i \, e\right )} + c + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} {\left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right )}\right )} e^{\left (-i \, f x - i \, e\right )}}{4 \, {\left (i \, a c - a d\right )} f} \]

input
integrate(1/(a+I*a*tan(f*x+e))^(1/2)/(c+d*tan(f*x+e))^(1/2),x, algorithm=" 
fricas")
 
output
-1/4*((-I*a*c + a*d)*f*sqrt(-2*I/((I*a*c + a*d)*f^2))*e^(I*f*x + I*e)*log( 
(I*a*c + a*d)*f*sqrt(-2*I/((I*a*c + a*d)*f^2))*e^(I*f*x + I*e) + sqrt(2)*s 
qrt(((c - I*d)*e^(2*I*f*x + 2*I*e) + c + I*d)/(e^(2*I*f*x + 2*I*e) + 1))*s 
qrt(a/(e^(2*I*f*x + 2*I*e) + 1))*(e^(2*I*f*x + 2*I*e) + 1)) + (I*a*c - a*d 
)*f*sqrt(-2*I/((I*a*c + a*d)*f^2))*e^(I*f*x + I*e)*log((-I*a*c - a*d)*f*sq 
rt(-2*I/((I*a*c + a*d)*f^2))*e^(I*f*x + I*e) + sqrt(2)*sqrt(((c - I*d)*e^( 
2*I*f*x + 2*I*e) + c + I*d)/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(a/(e^(2*I*f*x 
+ 2*I*e) + 1))*(e^(2*I*f*x + 2*I*e) + 1)) + 2*sqrt(2)*sqrt(((c - I*d)*e^(2 
*I*f*x + 2*I*e) + c + I*d)/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(a/(e^(2*I*f*x + 
 2*I*e) + 1))*(e^(2*I*f*x + 2*I*e) + 1))*e^(-I*f*x - I*e)/((I*a*c - a*d)*f 
)
 
3.12.58.6 Sympy [F]

\[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx=\int \frac {1}{\sqrt {i a \left (\tan {\left (e + f x \right )} - i\right )} \sqrt {c + d \tan {\left (e + f x \right )}}}\, dx \]

input
integrate(1/(a+I*a*tan(f*x+e))**(1/2)/(c+d*tan(f*x+e))**(1/2),x)
 
output
Integral(1/(sqrt(I*a*(tan(e + f*x) - I))*sqrt(c + d*tan(e + f*x))), x)
 
3.12.58.7 Maxima [F]

\[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx=\int { \frac {1}{\sqrt {i \, a \tan \left (f x + e\right ) + a} \sqrt {d \tan \left (f x + e\right ) + c}} \,d x } \]

input
integrate(1/(a+I*a*tan(f*x+e))^(1/2)/(c+d*tan(f*x+e))^(1/2),x, algorithm=" 
maxima")
 
output
integrate(1/(sqrt(I*a*tan(f*x + e) + a)*sqrt(d*tan(f*x + e) + c)), x)
 
3.12.58.8 Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(1/(a+I*a*tan(f*x+e))^(1/2)/(c+d*tan(f*x+e))^(1/2),x, algorithm=" 
giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeError: Bad Argument TypeError: Bad Argument Typeindex.cc inde 
x_m i_lex
 
3.12.58.9 Mupad [B] (verification not implemented)

Time = 21.00 (sec) , antiderivative size = 1508, normalized size of antiderivative = 8.67 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx=\text {Too large to display} \]

input
int(1/((a + a*tan(e + f*x)*1i)^(1/2)*(c + d*tan(e + f*x))^(1/2)),x)
 
output
(2*((a + a*tan(e + f*x)*1i)^(1/2) - a^(1/2)))/(d*f*((c + d*tan(e + f*x))^( 
1/2) - c^(1/2))*((a*1i)/d + ((a + a*tan(e + f*x)*1i)^(1/2) - a^(1/2))^2/(( 
c + d*tan(e + f*x))^(1/2) - c^(1/2))^2 - (a^(1/2)*c^(1/2)*((a + a*tan(e + 
f*x)*1i)^(1/2) - a^(1/2))*2i)/(d*((c + d*tan(e + f*x))^(1/2) - c^(1/2))))) 
 - (2^(1/2)*atan(((2^(1/2)*((4*d^7*f*(a*c - a*d*1i)*((a + a*tan(e + f*x)*1 
i)^(1/2) - a^(1/2)))/((c + d*tan(e + f*x))^(1/2) - c^(1/2)) - 4*a^(3/2)*c^ 
(1/2)*d^7*f + (2^(1/2)*(d^7*(a^2*c*f^2*1i - a^2*d*f^2) + (d^8*(5*a*c*f^2 - 
 a*d*f^2*3i)*((a + a*tan(e + f*x)*1i)^(1/2) - a^(1/2))^2)/((c + d*tan(e + 
f*x))^(1/2) - c^(1/2))^2 - (d^7*f*(a^(3/2)*c^(3/2)*f*2i + 6*a^(3/2)*c^(1/2 
)*d*f)*((a + a*tan(e + f*x)*1i)^(1/2) - a^(1/2)))/((c + d*tan(e + f*x))^(1 
/2) - c^(1/2))))/(a^(1/2)*f*(d*1i - c)^(1/2)) + (a^(1/2)*c^(1/2)*d^8*f*((a 
 + a*tan(e + f*x)*1i)^(1/2) - a^(1/2))^2*4i)/((c + d*tan(e + f*x))^(1/2) - 
 c^(1/2))^2)*1i)/(a^(1/2)*f*(d*1i - c)^(1/2)) - (2^(1/2)*(4*a^(3/2)*c^(1/2 
)*d^7*f - (4*d^7*f*(a*c - a*d*1i)*((a + a*tan(e + f*x)*1i)^(1/2) - a^(1/2) 
))/((c + d*tan(e + f*x))^(1/2) - c^(1/2)) + (2^(1/2)*(d^7*(a^2*c*f^2*1i - 
a^2*d*f^2) + (d^8*(5*a*c*f^2 - a*d*f^2*3i)*((a + a*tan(e + f*x)*1i)^(1/2) 
- a^(1/2))^2)/((c + d*tan(e + f*x))^(1/2) - c^(1/2))^2 - (d^7*f*(a^(3/2)*c 
^(3/2)*f*2i + 6*a^(3/2)*c^(1/2)*d*f)*((a + a*tan(e + f*x)*1i)^(1/2) - a^(1 
/2)))/((c + d*tan(e + f*x))^(1/2) - c^(1/2))))/(a^(1/2)*f*(d*1i - c)^(1/2) 
) - (a^(1/2)*c^(1/2)*d^8*f*((a + a*tan(e + f*x)*1i)^(1/2) - a^(1/2))^2*...